





## MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Sponsored by CMR Educational Society

(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC - "A" Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via Hakimpet), Secunderabad – 500100, Telangana State, India. Contact Number: 040-23792146/64634237, E-Mail ID: <u>mrcet2004@gmail.com</u>, website: <u>www.mrcet.ac.in</u>

## DEPARTMENT OF INFORMATION TECHNOLOGY II B.TECH I SEMESTER R17 SUPPLEMENTARY PREVIOUS QUESTION PAPERS



## LIST OF SUBJECTS

| CODE     | NAME OF THE SUBJECT                         |
|----------|---------------------------------------------|
| R17A0510 | Computer Organization                       |
| R17A0461 | Digital Logic Design                        |
| R17A0504 | Data Structures using C++                   |
| R17A0401 | Electronic Devices and Circuits             |
| R17A0503 | Mathematical Foundation of Computer Science |
| R17A0024 | Probability and Statistics                  |

# **R17**

### Code No: R17A0510 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, June 2022 Computer Organization

|         |  | $(\mathbf{C}$ | SE) |  |  |  |
|---------|--|---------------|-----|--|--|--|
| Roll No |  |               |     |  |  |  |

Time: 3 hours

Max. Marks: 70

Answer Any **Five** Questions All Questions carries equal marks. \*\*\*

- **1** Brief on fixed and floating point representation of relevant data. Write an **[14M]** algorithm for adding and subtracting 2 floating point binary numbers.
- 2 What are the types of micro operations? Write a note on arithmetic and logical [14M] unit
- **3** Describe the phases in Instruction cycle. Classify the instructions of typical **[14M]** computers.
- 4 What are hardwired and micro programmed controls? Write an example for a **[14M]** Micro program.

| Explain the following addressing modes                                     |                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i) Register mode                                                           | [ <b>3M</b> ]                                                                                                                                                                                                                                                                                                                                                                             |
| ii) Immediate mode                                                         | [4M]                                                                                                                                                                                                                                                                                                                                                                                      |
| iii) Indirect mode                                                         | [ <b>3</b> M]                                                                                                                                                                                                                                                                                                                                                                             |
| iv) Absolute mode                                                          | [4M]                                                                                                                                                                                                                                                                                                                                                                                      |
| Explain addition and subtraction algorithm flow chart with example.        | [14M]                                                                                                                                                                                                                                                                                                                                                                                     |
| What is pipelining? Name the two pipeline organizations. Explain about the | [14M]                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                            | <ul> <li>Explain the following addressing modes</li> <li>i) Register mode</li> <li>ii) Immediate mode</li> <li>iii) Indirect mode</li> <li>iv) Absolute mode</li> <li>Explain addition and subtraction algorithm flow chart with example.</li> <li>What is pipelining? Name the two pipeline organizations. Explain about the arithmetic pipeline with the help of an example.</li> </ul> |

8 Define locality of reference and explain use of a cache memory and direct – [14M] mapped cache memory

## Code No: R17A0461 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, June 2022 Digital Logic Design

|       |                                           |                                                                                       |                                          |                                       | (IT)                               |                          |                                     |              |               |           |       |       |               |
|-------|-------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------|--------------------------|-------------------------------------|--------------|---------------|-----------|-------|-------|---------------|
|       |                                           | Roll No                                                                               |                                          |                                       |                                    |                          |                                     |              |               |           |       |       |               |
| Time: | 3 hours                                   | 41                                                                                    | Answ                                     | er An                                 | y Fiv                              | e Que                    | stion                               | S<br>rlzo    | Ma            | x. M      | ark   | s: 70 |               |
| 1     | a) Conve<br>b) Perfo                      | ert (657) <sub>8</sub> into dec<br>rm the following<br>i) (11010) – (1                | t Ques<br>timal a<br>using               | and co<br>2's co                      | onvert                             | (2348<br>(2348<br>ement: | u ma<br>3) <sub>10</sub> ii<br>311) | nto h $-(1)$ | iexac         | lecin     | nal.  |       | [6M]<br>[8M]  |
| 2     | a) Encodo<br>b) Realizo                   | e data bits 1101 in<br>e OR gate, AND                                                 | nto the gate a                           | e 7-bit<br>nd XN                      | even                               | parity                   | v han<br>sing 1                     | nmin<br>NAN  | ig co<br>ND g | de<br>ate |       |       | [6M]<br>[8M]  |
| 3     | a) Explai<br>b) Using<br>Implicant<br>F(A | n the use of K-M<br>K-map, simplify<br>is and essential pr<br>$(B,C,D) = \Sigma m(1)$ | ap in c<br>the giv<br>time In<br>,3,7,11 | ligital<br>ven fu<br>nplica<br>1,15)+ | circu<br>inctio<br>ants.<br>- Σ d( | it<br>n and<br>0,2,4).   | also                                | indic        | cate 1        | the p     | rime  | 2     | [3M]<br>[11M] |
| 4     | Obtain th<br>a) F(A,B,<br>b) F(A,B        | e simplified expr<br>$(C,D) = \pi(0,1,2,3)$<br>$(C,D) = \pi(1,3,5,7)$                 | ession<br>4,10,1<br>,13,15               | in pro<br>1)<br>)+ d((                | oduct<br>),4)                      | of su                    | ns.                                 |              |               |           |       |       | [7M]<br>[7M]  |
| 5     | a)Design<br>b)Explair                     | a combinational<br>about binary mu                                                    | circuit<br>Iltiplie                      | by co<br>r                            | onver                              | ting B                   | CD t                                | o gra        | ay co         | ode       |       |       | [8M]<br>[6M]  |
| 6     | a)Design<br>b)Design                      | and explain abou<br>a combinational                                                   | t 4-bit<br>circuit                       | t com<br>t to re                      | parato<br>alize                    | or<br>half Si            | ubtra                               | ctor         | usin          | g bas     | sic g | ates. | [7M]<br>[7M]  |
| 7     | a)Design<br>b)Design                      | a sequential circu<br>a 4-bit Bidirectio                                              | uit by o<br>onal Sh                      | conve<br>nift Re                      | rting<br>egiste                    | JK flij<br>r.            | p floj                              | p to ]       | D-Fl          | ip flo    | ор    |       | [8M]<br>[6M]  |
| 8     | a)Compa<br>b)What a                       | re PROM,PLA and the advantages                                                        | nd PA                                    | L logi<br>Ds ov                       | c dev<br>ver fix                   | ices<br>ked fu           | nctio                               | n IC         | s             |           |       |       | [8M]<br>[6M]  |

### Code No: R17A0504 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, June 2022 Data Structures using C++

|       |      |                 |                        |                   |               | ( <b>C</b> | SE &          | IT)     | 8 -    |        |        |       |       |      |       |       |
|-------|------|-----------------|------------------------|-------------------|---------------|------------|---------------|---------|--------|--------|--------|-------|-------|------|-------|-------|
|       |      |                 | Roll                   | No                |               |            |               |         |        |        |        |       |       |      |       |       |
| Time: | 3 ho | ours            |                        |                   |               |            |               |         |        |        | Max    | . Ma  | arks  | : 70 | )     |       |
|       |      |                 |                        | 1                 | Answ          | er A       | ny <b>Fiv</b> | e Que   | stion  | 8      |        |       |       |      |       |       |
|       |      |                 |                        | All               | Ques          | stions     | carrie<br>*** | es equa | al ma  | rks.   |        |       |       |      |       |       |
| 1     | a)   | Explai          | n about a              | symptor           | tic no        | otatio     | ns in d       | letail  |        |        |        |       |       |      |       | [7M]  |
|       | b)   | Write<br>order  | a C++ pr<br>using Inse | ogram<br>rtion So | to so<br>ort. | rt the     | e givei       | n array | y witl | hne    | leme   | ents  | in as | scen | nding | [7M]  |
| 2     | a)   | Write           | a C++ pro              | gram to           | sear          | ch foi     | r giver       | ı key e | leme   | nts in | an a   | rray  | usin  | g L  | inear | [7M]  |
|       |      | Search          | 1                      |                   |               |            |               |         |        |        |        |       |       |      |       |       |
|       | b)   | Explai<br>using | n the pro<br>Heap Sort | cess of           | sorti         | ing tl     | ne foll       | owing   | g eler | nents  | in o   | desco | endiı | ng o | order | [7M]  |
|       |      | 23              | , 45, 12, 5            | 6, 9, 67          | 7, 98,        | 41, 8      | 3, 76,        | 15      |        |        |        |       |       |      |       |       |
| 3     | a)   | Impler          | nent Stac              | k ADT             | using         | g arra     | ys.           |         |        |        |        |       |       |      |       | [7M]  |
|       | b)   | What an exa     | is a Threa<br>mple.    | ded Bin           | ary T         | Tree?      | What          | are the | e adv  | antag  | ges of | f it? | Expl  | lain | with  | [7M]  |
| 4     |      | Explai          | n insertio             | n, delet          | ion a         | nd se      | arch o        | perati  | on for | r give | en bi  | nary  | tree  | ;    |       | [14M] |
|       |      |                 |                        |                   |               |            |               |         |        |        |        |       |       |      |       |       |



| 5 | Implement insertion and deletion in Priority Queue ADT. | [14M] |
|---|---------------------------------------------------------|-------|
|   |                                                         |       |

- 6 Explain the process of Merge sort with suitable example. [14M]
- 7 a) What is hashing? Apply double hashing for the following elements with table size 20: 16, 8, 63, 9, 27, 37, 48, 5, 69, 34, 1
  - b) Explain about skip list representation for dictionary with an example. [7M]

Page 5 of 11

8 Implement insertion, deletion and traversal operations in a Binary Search Tree. [14M]

## Code No: R17A0401 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) II B.Tech I Semester Supplementary Examinations, June 2022 Electronic Devices and Circuits

#### (EEE, ECE, CSE & IT)

| Roll No |  |  |  |  |  |
|---------|--|--|--|--|--|
|         |  |  |  |  |  |

Time: 3 hours

#### Max. Marks: 70

Answer Any **Five** Questions All Questions carries equal marks. \*\*\*

a. Explain the V-I characteristics of a PN Junction diode under forward and [10M] reverse bias.
 b. If the current of silicon diode with V<sub>T</sub>=26mV doubles find the increase in [4M]

b. If the current of silicon diode with  $V_T=26mV$  doubles, find the increase in [4M] forward voltage drop.

- 2 Define tunneling. Explain the operation of a tunnel diode using energy band [14M] diagram.
- 3 Explain the working of a full wave rectifier and derive expression for [14M] Rectification Efficiency, Ripple Factor and Transformer Utilization Factor of a half wave rectifier with resistive load
- a. Explain the operation of full wave rectifier with LC filter and derive the [10M] expression for ripple factor.
  b. A full wave rectifier circuit uses capacitor filter with 500µF capacitor and [4M]

provides load current of 200mA at 8% ripple. calculate i) dc voltage across the capacitor, ii) peak rectified voltage obtained from 50Hz supply.

5 Derive the expression for current gain, voltage gain, input and output impedances [14M] of a CE amplifier using h- parameter exact and approximate analysis.

| 6 | a. Explain the input and output characteristics of CB configuration and from the output characteristics explain different regions of operation of transistor | [10M]         |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|   | b. Explain the concept of base width modulation                                                                                                              | [4M]          |
| 7 | <ul><li>a. Explain the need for biasing.</li><li>b. Draw the circuit of collector to base bias and derive the expression for stability factor.</li></ul>     | [4M]<br>[10M] |
| 8 | a. Explain the construction and operation of a JFET and plot the drain and transfer characteristics                                                          | [10M]         |
|   | b. Differentiate JFET and MOSFET                                                                                                                             | [ <b>4M</b> ] |

**R17** 

## Code No: R17A0503 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

## II B.Tech I Semester Supplementary Examinations, June 2022 Mathematical Foundation of Computer Science

| (CSE)   |  |  |  |  |  |  |  |  |  |  |  |
|---------|--|--|--|--|--|--|--|--|--|--|--|
| Roll No |  |  |  |  |  |  |  |  |  |  |  |

| Time: | 3 hours Max. Marks: 70                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|       | Answer Any <b>Five</b> Questions<br>All Questions carries equal marks.<br>***                                                                                                                                                                                                                                                                                                                                                               |              |
| 1     | a. Show that $\neg P \land (\neg Q \land R) \lor (Q \lor R) \lor (P \land R) \Leftrightarrow R$ without constructing truth table<br>b. Prove that the formula $Q \lor (P \land \neg Q) \lor (\neg (\neg P \lor \neg Q) \Leftrightarrow P \lor Q$                                                                                                                                                                                            | [7M]<br>[7M] |
| 2     | <ul> <li>a. Prove the equivalence p ∨ q ∨ (¬ p ∧ ¬ p ∧ r) ⇔ p ∨ q ∨ r</li> <li>b. Write the following statements in symbolic form using quantifiers. <ol> <li>i. Every real numbers have an additive inverse.</li> <li>ii. The set of real numbers has a multiplicative identity.</li> </ol> </li> </ul>                                                                                                                                    | [7M]<br>[7M] |
| 3     | The function $f: R \to R$ and $g: R \to R$ are defined by $f(x) = 3x + 7$ for all $x \in R$ and $g(x) = x(x^3 - 1)$ for all $x \in R$ . Verify that <i>f</i> is one to one but <i>g</i> is not and also find $f^{-1}(0)$ and $f^{-1}(-4)$ .                                                                                                                                                                                                 | [14M]        |
| 4     | <ul><li>a. Explain partial ordering relation with example.</li><li>b. Define lattice and give example</li></ul>                                                                                                                                                                                                                                                                                                                             | [7M]<br>[7M] |
| 5     | <ul><li>a. Define group and explain with an example</li><li>b. What is Monoid? Explain abelian monoid.</li></ul>                                                                                                                                                                                                                                                                                                                            | [7M]<br>[7M] |
| 6     | <ul> <li>a) A Survey of 500 television viewers of a sports channel produced the following information. 285 watch cricket, 195 watch hockey, 115 watch football, 45 watch cricket and foot ball, 70 watch cricket and hockey, 50 watch hockey and foot ball and 50 do not watch any of the three kinds of games?Find the Number of viewers who watch all the three kinds of games.</li> <li>b) Explain Sum Rule and Product Rule.</li> </ul> | [8M]<br>[6M] |
| 7     | a. Solve the recurrence relation $a_n$ -7 $a_{n-1}$ +16 $a_{n-2}$ -12 $a_{n-3}$ =0 for n>=3 with initial conditions $a_0 = 1.a_1 = 4$ and $a_2 = 8$ .                                                                                                                                                                                                                                                                                       | [7M]         |
|       | <ul> <li>b. A byte is a sequence of 8 bits. Find the number of bytes.</li> <li>i) Begin with 11 and end with 11</li> <li>ii) Begin with 11 and do not end with 11</li> <li>iii) Begin with 11 or end with 11</li> </ul>                                                                                                                                                                                                                     | [7M]         |

8 Define the chromatic number and find the chromatic number of the following [14M] graphs



Page 10 of 11

## Code No: R17A0024 MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India)

# II B.Tech I Semester Supplementary Examinations, June 2022

## **Probability and Statistics**

| (CSE & II) |  |  |  |  |  |  |  |  |  |  |  |
|------------|--|--|--|--|--|--|--|--|--|--|--|
| Roll No    |  |  |  |  |  |  |  |  |  |  |  |

Time: 3 hours

Answer Any **Five** Questions All Questions carries equal marks. \*\*\*

**1** A Random variable X has the following probability function:

| X    | 0 | 1 | 2  | 3  | 4  | 5              | 6               | 7                  |
|------|---|---|----|----|----|----------------|-----------------|--------------------|
| P(x) | 0 | k | 2k | 2k | 3k | k <sup>2</sup> | 2k <sup>2</sup> | 7k <sup>2</sup> +k |

- i) Determine K
- ii) Evaluate  $P(X \le 6), P(X \ge 6), P(0 \le x \le 4)$
- iii)if  $P(X \le c) > 1/2$ , Find the Minimum value of c and
- iv)Mean
- v)Varience
- 2 Out of 800 families with 5 children each, how many families would you expect [14M] to have
  - a)3 boys
    b)5 girls
    c)either 2 or 3 boys
    d) atleast one boy
    Assume Equal Probabilities for boys and girls .
- **3** A sample of 12 fathers and their elder sons gave the following data about their elder [14M] sons. Calculate the Coefficient of rank correlation.

| Fathers | 65 | 63 | 67 | 64 | 68 | 62 | 70 | 66 | 68 | 67 | 69 | 71 |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|
| Sons    | 68 | 66 | 68 | 65 | 69 | 66 | 68 | 65 | 71 | 67 | 68 | 70 |

[14M]

Max. Marks: 70

**R17** 

a)What are the lines of regression.b)Find regression line of X on Y

| Х | 40 | 52  | 60  | 68  | 70  | 72  | 80  |
|---|----|-----|-----|-----|-----|-----|-----|
| Y | 80 | 110 | 121 | 140 | 145 | 148 | 165 |

- 5 A Population consists of six numbers 4,8,12,16,20,24. Consider all samples of size two [14M] which can be drawn without replacement from this population. Find
  a) The population mean
  b) The population standard deviation
  c) the mean of the sampling distribution of means
  d) The standard deviation of the sampling distribution of means.
- a) Define estimate, estimator and estimation.
  b) Measurments of the weights of a random sample of 200 ball bearings made by a certain machine during one week showed a mean of 0.824 and a strandard deviation of 0.042. Find the maximum error at 95% confidence interval? Find the confidence limits for the mean if x=32
- 7 The means of two random samples of sizes 9 and 7 are 196.42 and 198.82 respectively. [14M] The sum of the squares of the deviations from the mean are 26.94 and 18.73 respectively. Can the sample be considered to have been drawn from the same normal population.
- 8 At a certain petrol pump, customers arrives in a Poission process with an average time of [14M] five minutes between arrivals. The time intervals between serves at the petrol pump follows exponential distribution and the mean time taken to service a unit is two minutes. Find the following;

a)Average time a customer has to wait in the queue.

b)By how much time the flow of the customers be increases to justify the opening of other service point, where the customer has to wait for five minutes for the service.